Search results for "Generating algorithms"

showing 4 items of 4 documents

Gray code for permutations with a fixed number of cycles

2007

AbstractWe give the first Gray code for the set of n-length permutations with a given number of cycles. In this code, each permutation is transformed into its successor by a product with a cycle of length three, which is optimal. If we represent each permutation by its transposition array then the obtained list still remains a Gray code and this allows us to construct a constant amortized time (CAT) algorithm for generating these codes. Also, Gray code and generating algorithm for n-length permutations with fixed number of left-to-right minima are discussed.

Golomb–Dickman constantPolynomial codeRestricted permutationsGenerating algorithms0102 computer and information sciences02 engineering and technology01 natural sciencesTheoretical Computer ScienceGray codeCombinatoricsPermutation[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsTransposition arrayComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsSelf-synchronizing codeAmortized analysisMathematics::CombinatoricsParity of a permutation020206 networking & telecommunicationsGray codes010201 computation theory & mathematicsConstant-weight codeMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Combinatorial Gray codes for classes of pattern avoiding permutations

2007

The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular generating order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern avoiding permutations. Among the families under consideration are those counted by Catalan, Schr\"oder, Pell, even index Fibonacci numbers and the central binomial coefficients. Consequently, this provides Gray codes for $\s_n(\tau)$ for all $\tau\in \s_3$ and the obtained Gray codes have distances 4 and 5.

Mathematics::CombinatoricsFibonacci numberPattern avoiding permutationsGeneral Computer ScienceOrder (ring theory)Generating algorithms94B25Gray codesCombinatorial algorithms05A05; 94B25; 05A15Theoretical Computer ScienceCombinatoricsSet (abstract data type)Constraint (information theory)Gray codePermutation05A05ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)05A15Binomial coefficientComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Gray code for derangements

2004

AbstractWe give a Gray code and constant average time generating algorithm for derangements, i.e., permutations with no fixed points. In our Gray code, each derangement is transformed into its successor either via one or two transpositions or a rotation of three elements. We generalize these results to permutations with number of fixed points bounded between two constants.

021103 operations researchMathematics::CombinatoricsRestricted permutationsApplied Mathematics0211 other engineering and technologiesGenerating algorithms0102 computer and information sciences02 engineering and technologyFixed pointGray codes01 natural sciencesCombinatoricsGray codePermutationDerangement010201 computation theory & mathematicsBounded function[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Discrete Mathematics and CombinatoricsConstant (mathematics)Rotation (mathematics)Rencontres numbersComputingMilieux_MISCELLANEOUSMathematicsDiscrete Applied Mathematics
researchProduct

A loopless algorithm for generating the permutations of a multiset

2003

AbstractMany combinatorial structures can be constructed from simpler components. For example, a permutation can be constructed from cycles, or a Motzkin word from a Dyck word and a combination. In this paper we present a constructor for combinatorial structures, called shuffle on trajectories (defined previously in a non-combinatorial context), and we show how this constructor enables us to obtain a new loopless generating algorithm for multiset permutations from similar results for simpler objects.

Discrete mathematicsMultisetMathematics::CombinatoricsGeneral Computer ScienceMultiset permutationsLoopless algorithmStructure (category theory)Context (language use)Gray codesTheoretical Computer ScienceCombinatoricsGray codePermutationLoopless generating algorithmsShuffle combinatorial objectsBinomial coefficientWord (computer architecture)Computer Science::Formal Languages and Automata TheoryMathematicsMathematicsofComputing_DISCRETEMATHEMATICSComputer Science(all)Theoretical Computer Science
researchProduct